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Abstract. We consider a microscopical model for the Zn-doped CuO2 plane with Zn impurities being
described as vacancies for the d-states on Cu sites. A reduction of the original p-d model to an effective
one-band model results in the t-J model with vacancies for the spin 1/2 d-states at the Zn-sites. By
employing the T -matrix formalism for the Green functions in terms of the Hubbard operators the density
of electronic states (DOS) is calculated. Symmetry analysis of the perturbation matrix shows that in the
system with d-type electronic wave functions additional DOS of d-, p- and s-types appear due to the
perturbation of local energy levels and the interaction between nearest neighbors around the vacancy.
The local and resonant state formation caused by Zn impurities is analyzed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.55.-i Impurity and defect levels
– 74.72.-h High-Tc compounds

1 Introduction

A number of experimental and theoretical works was ded-
icated to the investigation of impurity problems in super-
conducting cuprates (see, e.g. [1,2]). Their main goals were
to draw out some definite conclusions concerning their
electronic structure and the superconducting order param-
eter symmetry. As an example of an inherent nonmagnetic
dopant in a strongly correlated electronic system, special
interest was attracted to the study of the Zn/Cu substitu-
tions in the CuO2 plane. In order to conceive some of the
unexpected consequences caused by Zn, many theoretical
models have been investigated, although without prelimi-
nary proper consideration of the corresponding electronic
states.

In a number of papers, the Zn impurity in the CuO2

plane was considered as a local nonmagnetic impurity level
at high energy in the Hubbard model [3,4] or the t-J
model [5,6]. Using the T -matrix description, bound impu-
rity states within the Hubbard gap were obtained. Due to
strong Coulomb correlations in the model, the bare local
impurity potential becomes a dynamic one which results
in the resonant scattering and bound state formation of
different (p, d-wave) symmetries in the gap. Formation
of local magnetic moments induced by a spin vacancy
in underdoped cuprates was considered in [7–9] within
the RVB theory for the two-dimensional spin liquid. In-
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fluence of the impurity local moments on magnetic and
transport properties in the RVB state were studied within
the slave-boson and slave-fermion mean-field theories in
[10,11]. The importance of the 4s orbital for the Zn2+

impurity in charge transfer excitations between copper
3d and zinc 4s orbitals was pointed out in [12]. To in-
vestigate the influence of nonmagnetic impurities on the
d-wave superconductivity, several phenomenological mod-
els of Fermi liquid type were also considered (see, e.g.,
[13–17]). In the framework of the many-band p-d model, a
general qualitative analysis of the density of state (DOS)
modifications caused by Zn and Ni impurities in electron
and hole doped cuprates were performed in [18].

Based on band structure calculations we proposed in
our previous paper [2] a microscopical model for the Zn-
doped CuO2 plane. It was shown that in the low-energy
electronic spectrum the contribution of the Zn 3d10 or-
bitals can be neglected in comparison with the Cu 3d
and O 2p ones. That permits to consider Zn impurities
as vacancies for the d-states on Cu sites with the oxy-
gen p-states being unaffected within the p-d model with
strong correlations. Using the cell-perturbation method
we derived an effective two-band Hubbard model for the
Zn/CuO2 system. Further reduction to an effective one-
band model results in the t-J model with impurity sites
having different hopping energy and exchange interaction
of ferromagnetic type.
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In the present paper we investigate the proposed t-J
model for Zn/CuO2 in order to find the perturbation in
the DOS caused by the Zn-impurities. The paper is orga-
nized as follows. In Section 2, we apply the equation of
motion method for the Green function (GF) in order to
obtain the corresponding Dyson equation with impurity-
caused perturbation matrix V̂ . In Section 3, using the irre-
ducible representation method of group theory [19,20] the
nondiagonal matrix V̂ is transformed into block-diagonal
form which corresponds to states of s-, p- and d-symmetry.
In Section 4, we calculate the perturbative parts of the GF
caused by the impurity and the corresponding additional
DOS. The numerical results and the discussion are pre-
sented in Sections 5 and 6 respectively.

2 Model and Green function equations

We consider an effective t-J model for the CuO2 plane
with one Zn impurity [2]

H = H0 + Vvac + Vimp, (1)

where the host lattice without impurity is described by
the t-J model

H0 = Ht−J = ε
∑
iσ

Xσσ
i + t

∑
i6=j,σ

Xσ0
i X0σ

j

+
1
4
J
∑
i6=j,σ

(Xσσ̄
i X σ̄σ

j −Xσσ
i X σ̄σ̄

j ), (2)

written in terms of the Hubbard operators, e.g., Xσ0
i =

c+iσ(1 − niσ̄) where σ̄ = −σ. The vacancy contribution is
given by

Vvac = −ε
∑
σ

Xσσ
0 − t

∑
∆σ

(Xσ0
0 X0σ

∆ + h.c.)

− 1
4
J
∑
∆σ

(Xσσ̄
0 X σ̄σ

∆ −Xσσ
0 X σ̄σ̄

∆ + h.c.), (3)

where the summations are performed over the nearest
neighbor (n.n.) Cu-sites of the host square lattice, and
the Zn-impurity is at the i = 0 site with ∆ = 1, 2, 3, 4
denoting its n.n. sites as shown in Figure 1. The Hamil-
tonian (1–3) is applicable both for electron (0 < n < 1)
and hole (1 < n < 2) doping. In the former case ε and
t are the on-site energy and the hopping integral for the
lowest one-hole state |D〉 of the CuO4 plaquette, whereas
in the latter one they are those of the Zhang-Rice singlet
state |ψ〉, as outlined in [2]. For the sake of simplicity we
consider in the following analysis only the electron dop-
ing, since the transformation to the hole doping is quite
straightforward. In what follows we neglect in (1) the un-
coupled impurity oxygen state given by Vimp at the i = 0
site since its energy is much higher than the chemical po-
tential µ [2].

In order to calculate the DOS for one-electron excita-
tions in the system, we consider the equation of motion

Fig. 1. Schematic picture of the impurity influenced cluster.

for the GF in terms of Hubbard operators:

Gijσ(t, t′) = 〈〈X0σ
i (t);Xσ0

j (t′)〉〉
= −iθ(t− t′)〈{X0σ

i (t), Xσ0
j (t′)}〉, (4)

where the Zubarev notation [21] is used. By employing the
projection technique [22] for the GF we write down the
corresponding Dyson equation. Neglecting the self-energy
contribution in the generalized mean-field approximation
(GMFA) we obtain

ωGijσ(ω) = δij +
∑
l

EilGljσ(ω) +
∑
l

VilGljσ(ω), (5)

where we introduced the normalized GF:

Gijσ(ω) = Q−1
i Gijσ(ω),∫ ∞

−∞
dω
{ 1
π

Im Gijσ(ω − i0+)
}

= δij (6)

with the correlation functionQi = 〈X00
i +Xσσ

i 〉 = 1−ni/2.
In the paramagnetic state it depends only on the average
number of holes

ni =
∑
σ

〈Xσσ
i 〉 = Qi

∫ ∞
−∞

2 dω
e(ω−µ)/T + 1

{ 1
π

Im Giiσ(ω)
}
,

(7)

where ni ' n for i 6= 0,∆. In (7) and later on we use
the notation ω = ω− i0+. The equation for the frequency
matrix Eil of the host lattice reads

Eil = 〈{[X0σ
i ,H0], Xσ0

l }〉 Q−1
l , (8)

and the perturbation matrix is given by

Vil = 〈{[X0σ
i , Vvac], Xσ0

l }〉 Q−1
l = δi0δl0V00

+ δi0
∑
∆

δl∆V01 + δl0
∑
∆

δi∆V10 + V11

∑
∆

δi∆δl∆. (9)

Equation (5) can be written in the form of the Dyson
equation (in the matrix notation)

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ = Ĝ0 + Ĝ0M̂Ĝ0, (10)
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where the scattering matrix is

M̂ = V̂
1

1− Ĝ0V̂
, (11)

and the zero-order GF for the host lattice is given by:

Ĝ0(ω) = [ω − Ê]−1. (12)

Introducing the q-representation for the ideal host lattice
the zero-order GF can be written in the form

G0
ijσ(ω) =

1
N

∑
q

eiq(Ri−Rj)
1

ω −E(q)
, (13)

where

E(q) = ε̃+ 2t̃(cos qx + cos qy). (14)

In the GMFA, according to (8), the hopping energy t̃ and
the on-site energy ε̃ = ε+ δε are renormalized due to the
kinematic and exchange interactions [22]:

t̃ =
t

Q
[〈(1− n0/2)(1− n∆/2)〉+ 〈S0S∆〉]

− 2J
Q
〈Xσ0

0 |X0σ
∆ 〉; (15)

δε =
2J
Q

[〈(1− n0/2)(1− n∆/2)〉+ 〈S0S∆〉 −Q]

− 4t
Q
〈Xσ0

0 |X0σ
∆ 〉, (16)

where Q is the correlation function for ni = n. In the same
approximation we obtain for the perturbation potential

V00 = −ε̃, V01 = V10 = −t̃, V11 = −δε/4, (17)

if the correlation functions for the number ni and spin Si
operators in (9) are calculated for the host ideal lattice.
Later on we measure the energy ω in units of the half-
bandwidth w = 4t̃ (it means V01 = V10 = −1/4) from the
renormalized on-site energy (V00 = −ε̃ = 0).

3 Symmetry analysis

The perturbation matrix has the following form:

V̂ =


V00 V01 V01 V01 V01

V10 V11 0 0 0
V10 0 V11 0 0
V10 0 0 V11 0
V10 0 0 0 V11

 , (18)

where its elements are given in (17). The notation used
throughout the paper takes into account the d-type sym-
metry of the impurity wave function shown in Figure 1.

One can diagonalize the perturbation matrix (18) by the
unitary transformation (Û+Û = 1)

Û =


0 0 0 1 0

1/2 1/
√

2 0 0 1/2
−1/2 0 1/

√
2 0 1/2

1/2 −1/
√

2 0 0 1/2
−1/2 0 −1/

√
2 0 1/2

 : (19)

Û+V̂ Û =

 Vs 0 0
0 V̂p 0
0 0 V̂d

 , (20)

where the s-, p- and d-symmetry matrices are

Vs = V11, V̂p =

(
V11 0
0 V11

)
, V̂d =

(
V00 2V01

2V10 V11

)
.

(21)

The corresponding s-, p- and d-symmetry wave functions
for the impurity cluster are defined by

|s〉 =
4∑
l=0

U(l, 0)|l〉 =
1
2

{
|1〉 − |2〉+ |3〉 − |4〉

}
;

|px〉 =
∑
l

U(l, 1)|l〉 =
1√
2

{
|1〉 − |3〉

}
;

|py〉 =
∑
l

U(l, 2)|l〉 =
1√
2

{
|2〉 − |4〉

}
;

|d1〉 =
∑
l

U(l, 3)|l〉 = |0〉;

|d2〉 =
∑
l

U(l, 4)|l〉 =
1
2

{
|1〉+ |2〉+ |3〉+ |4〉

}
·

(22)

Using the rectangular T̂ -matrices [20] which are the col-
umns of the unitary matrix (19)

T̂s =
1
2


0
1
−1
1
−1

 ; T̂p =
1√
2


0 0
1 0
0 1
−1 0
0 −1

 ; T̂d =


1 0
0 1/2
0 1/2
0 1/2
0 1/2

 ,

we can write the Dyson equation (10) for the GF in the
form1

Ĝ = Ĝ0 +
∑

µ=s,p,d

Ĝ0T̂µM̂µT̂
+
µ Ĝ

0 , (23)

1 Everywhere the argument of a function is omitted it is as-
sumed to be ω.
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where

M̂µ = T̂+
µ V̂

1
1− Ĝ0V̂

T̂µ = V̂µ
[
1− Ĝ0

µV̂µ
]−1

. (24)

The matrices V̂µ ≡ T̂+
µ V̂ T̂µ are given by (21). The matri-

ces Ĝ0
µ(ω) ≡ T̂+

µ Ĝ
0(ω)T̂µ, Îµ(ω) = 1 − Ĝ0

µ(ω)V̂µ and the
determinants Dµ(ω) = det Îµ(ω) are obtained as follows:

G0
s(ω) = G0

11(ω)− 2G0
12(ω) +G0

13(ω) ≡ γs(ω) , (25)

Is = Ds = 1− V11γs ; (26)

Ĝ0
p(ω) =

(
γp 0
0 γp

)
; γp(ω) = G0

11(ω)−G0
13(ω), (27)

Îp =

(
1− V11γp 0

0 1− V11γp

)
; Dp = (1− V11γp)2;

(28)

Ĝ0
d(ω) =

 G0
00 2G0

01

2G0
01

∑
∆G

0
∆1

 ≡ (d00 d01

d10 d11

)
, (29)

Îd =

(
1− V00d00 − 2V10d01 −2V01d00 − V11d01

−V00d10 − 2V10d11 1− 2V01d10 − V11d11

)
,

Dd = 1− V00d00 − V11d11 − 2V01d10 − 2V10d01

+ (V00V11 − 4V01V10)(d00d11 − d01d10)

= (ω − V00)(G0
00 − 4V11G

0
01)− (1 + 4V10)(1 + 4V01)G0

01,
(30)

where we used the relations d11 = 4ωG0
01, G0

01 = ωG0
00−1.

Substituting in (30) the perturbation potential given by
(17) we obtain

Dd(ω) = ω[G0
00(ω)− 4V11G

0
01(ω)]. (31)

In (25, 27, 29) we have used the symmetry of the zero-
order GF G0

ij(ω) given by (13) for the impurity cluster.
Finally, for the partial scattering matrices M̂µ = V̂µÎ

−1
µ

we derive:

Ms(ω) =
V11

1− V11γs
; (32)

M̂p(ω) =
V11

1− V11γp

(
1 0
0 1

)
; (33)

M̂d(ω) =
1
Dd

 V00 − |V |d11 2V01 + |V |d01

2V10 + |V |d10 V11 − |V |d00

 , (34)

where |V | = V00V11 − 4V01V10 is the determinant of V̂d
and we used the identity

|1−AB| (1−AB)−1 = 1− |A| |B|B−1A−1

valid for 2× 2 matrices A and B.

4 Green functions and DOS

We can write the GF (23) in the form

Gij(ω) = G0
ij(ω) +

∑
µ=s,p,d

∆G
(µ)
ij (ω). (35)

To calculate the perturbation parts, we need the following
products T̂+

µ Ĝ
0:(

0 1/2 −1/2 1/2 −1/2 0 ...
)
N
Ĝ0(ω) =(

...
∑
l(T̂

+
s )lG

0
lj ...

)
N

=
1
2

(
...
∑
∆(−1)1+∆G0

∆j ...
)
N
,

(36)

(
0 1/

√
2 0 −1/

√
2 0 0 ...

0 0 1/
√

2 0 −1/
√

2 0 ...

)
N

Ĝ0(ω) =

(
...
∑
l(T̂

+
p )1lG

0
lj ...

...
∑
l(T̂

+
p )2lG

0
lj ...

)
N

=
1√
2

(
... G0

1j −G0
3j ...

... G0
2j −G0

4j ...

)
N

,

(37)

(
1 0 0 0 0 0 ...

0 1/2 1/2 1/2 1/2 0 ...

)
N

Ĝ0(ω) =

(
...
∑
l(T̂

+
d )1lG

0
lj ...

...
∑
l(T̂

+
d )2lG

0
lj ...

)
N

=

(
... G0

0j ...

... 1
2

∑
∆G

0
∆j ...

)
N

. (38)

The corresponding elements
∑
lG

0
il(T̂µ)lm can be ob-

tained by transposition of the matrix given in (36–38).
Therefore, for the GF in (35) we have

∆G
(s)
ij =

V11

1− V11γs

1
4

∑
∆′∆

(−1)∆
′+∆G0

i∆′G
0
∆j , (39)

∆G
(p)
ij =

V11

1− V11γp

1
2

{
(G0

i1 −G0
i3)(G0

1j −G0
3j)

+ (G0
i2 −G0

i4)(G0
2j −G0

4j)
}
, (40)

∆G
(d)
ij = Md

00G
0
i0G

0
0j +Md

01

1
2

∑
∆

G0
i0G

0
∆j

+Md
10

1
2

∑
∆′

G0
i∆′G

0
0j +Md

11

1
4

∑
∆′∆

G0
i∆′G

0
∆j ,

(41)

where Md
ij are given by (34). The expression (41) can be

simplified further using the relation
∑
∆G

0
i∆ = 4(ωG0

i0 −
δi0). For the perturbation potential (17) we obtain:

∆G
(d)
ij =

1
Dd

[
ω(4V11ω − 1)G0

i0G
0
0j

− 4V11ω(G0
i0δ0j + δi0G

0
0j) + (4V11 +G0

00)δi0δ0j
]
. (42)
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Fig. 2. ∆gs(ω) for different scattering potential V11 < V c
s .

The inset shows the position ω0 and the inverse height Γ of
the peak.

The general representation for the DOS is [19,20]

g(ω) = g0(ω) +
1
N
∆g(ω); ∆g(ω) =

1
π

Im
D′(ω)
D(ω)

(43)

with

D = det(1− Ĝ0V̂ ) = DsDpDd, (44)

where g0(ω) is the corresponding DOS for the host lattice
and Dµ(ω) are given by equations (26, 28, 31).

5 Numerical results

The additional DOS according to (43, 44) is given by:

∆g(ω) =
1
π

Im
d

dω
lnD(ω) =

1
π

d
dω

argD(ω)

=
∑
µ

1
π

d
dω

argDµ(ω) =
∑
µ

∆gµ(ω). (45)

The zero-order GF involved in the expressions for Dµ(ω)
can be reduced to elliptical integrals (see Appendix) which
is used in the numerics. The additional DOS ∆gs and ∆gp
are shown in Figures 2 and 3 for V11 < V c

µ with

V c
s =

π

4(4− π)
, V c

p =
π

4(π − 2)
,

respectively, when there are resonant states in the band
of the host lattice. For V11 larger than the critical values,
V11 > V c

s(p), ∆gs(p)(ω) has a δ-peak outside the band. The
additional p-states are doubly degenerated. The additional
d-states have two modes. However the mode situated at
the i = 0 site with ∆gd(ω) ∝ δ(ω) should be excluded
from the consideration since there is no state at the va-
cancy site and the mode has no physical meaning [20].
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Γ ω0

Fig. 3. ∆gp(ω) for different scattering potential V11 < V c
p .

The inset shows the position ω0 and the inverse height Γ of
the peak.

0 1 2
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0.5

1

1.5

2

ω
0

d
p
s

Vd Vp Vs

Fig. 4. The position of the local state in the additional DOS
∆gµ = δ(ω − ωµ0 ) outside the band for V11 > V c

µ (µ = s, p, d).

The other mode has no resonant states but logarithmic
divergences at the center and boundaries of the band. At
V11 > V c

d = 0.25 it has a δ-peak outside the band. The
energy dependences of the s-, p- and d- local modes on the
interaction V11 are shown in Figure 4.

Let us estimate the value of the dimensionless pertur-
bation potential V11. For small doping one can neglect the
last terms in (15) and (16) which are proportional to the
correlation function 〈Xσ0

0 |X0σ
∆ 〉 ∝ (1 − n) = δ. In this

approximation we obtain:

V11 =
J

8

(
1
t̃
− 1
t

)
' 0.45.

Here we took into account that the bandwidth in the t-
J model due to spin-fluctuations is strongly renormalized
and as many calculations show it becomes of the order
of the exchange interaction, w = 4t̃ ' J = 0.4t (see,
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e.g., [22]). For a larger doping the last term in (16) gives
a positive contribution to the perturbation potential V11

of the order tδ/2t̃(1 + δ). However, with doping the band-
width increases that suppresses the first term in (16) and
as a crude estimation one can use the value V11 ≤ 0.5.

One sees that in the present calculation V11 exceeds
the critical value for d-states whereas the two other local
modes are still well above. In contrast to this result the
exact diagonalization study for a 20× 20 cluster [5] found
that there are bound states for all three modes for J/t =
0.4. It cannot be excluded that an improved treatment
for the one-particle GF beyond the present Hubbard I
approximation yields all three localized level.

6 Conclusion

In the present paper we considered the microscopical
model for the Zn-doped CuO2 plane with Zn impurities,
equation (1), which are described as vacancies for the d-
states on Cu sites. The perturbation potential Vimp due
to the uncoupled impurity oxygen state at the Zn site has
been neglected since its energy is much higher than the
relevant energy region. Applying the projection technique
for the Green functions in terms of the Hubbard opera-
tors we obtained the Dyson equation (5). The Hubbard
operator technique has the advantage of rigorous treating
the constraints of no double occupancy in the t-J model.
The Dyson equation was solved by applying the standard
T -matrix technique. Performing the symmetry analysis in
Section 3 we fully took into account the d-symmetry of
the wave functions at Cu-sites of the host lattice that re-
sulted in special forms for the s-, p- and d-symmetry of
the wave functions (22), partial scattering matrices (32,
33, 34), and Green functions (39, 40, 41). In particular,
the s- and p-symmetry scattering matrices appear only
due to the perturbation potential V11 induced by the va-
cancy at the nearest neighbor sites. To compute its value
(16), one has to calculate the corresponding spin and elec-
tron correlation functions. The latter could be obtained
from the equations (39, 40, 41) for the GF, which closes
the self-consistent loop. However, in the present paper we
considered this perturbation as a free parameter and stud-
ied only the additional DOS of s-, p- and d- symmetries,
shown in Figures 2–4. They have either resonant peaks
within the d-band of the host lattice or δ-peaks outside
the band for stronger scattering potential V11. Numerical
calculations were greatly simplified by using the analyti-
cal forms of the GF in terms of the elliptic integrals. A
self-consistent calculation of the DOS and corresponding
correlation functions and the consideration of thermody-
namic properties induced by the vacancy in the d-band
within the t-J model will be presented in subsequent pub-
lications.
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Appendix

A.1 Zero-order Green functions

Consider the complex function of a real argument

Jmn(ω) =
1

(2π)2

π∫
−π

π∫
−π

ei(mx+ny)

ω − ε(x, y)− i0+
dxdy

=
1
π2

π∫
0

π∫
0

cosmx cosny
ω − ε(x, y)− i0+

dxdy, (A.1)

where ε(x, y) = (cosx + cos y)/2. Further we use the no-
tation ω = ω− i0+. Performing in the last expression the
substitution ω → −ω, x→ π − x, y → π − y one sees

Jmn(−ω) = (−1)m+n+1J∗mn(ω). (A.2)

To compute Jmn(ω) we integrate at first the expression
2 cosny/(c(x)− cos y) with c(x) = 2ω − cosx over y:

In(c) =

π∫
0

2 cosny
c− cos y

dy =

π∫
−π

2einy

2c− (eiy + e−iy)
dy

=
2
i

∮
|z|=1

zn dz
c2 − 1− (z − c)2

,

where we have substituted z = eiy. Due to the infinitesimal
negative imaginary component of c one pole is inside the
integration contour and the other one is outside, depend-
ing on the choice of the analytical branch of the square
root. Supposing the branch to be analytically continued
from the real semiaxis [1,+∞] it is c−

√
c2 − 1. To make

the branch one-valued the segment [−1, 1] of the real axis
is cut from the complex plane, so that c (|c| < 1) is at
the lower bank of the cut. The residue at the pole can be
easily computed giving the result

In(c) = 2π
(c−

√
c2 − 1)n√
c2 − 1

= 2π
e−nξ

sinh ξ
, (A.3)

where ξ = arccosh c, the hyperbolic arccosine being a com-
plex function of a real argument. Thus the expression for
Jmn(ω) reads:

Jmn(ω) =
1
π2

π∫
0

In(c) cosmx dx =
2
π

π∫
0

e−nξ cosmx
sinh ξ

dx.

(A.4)
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Substituting in (A.4) t = ω − cosx and neglecting the
imaginary component of ω one gets

Jmn(ω) =

2
π

ω+1∫
ω−1

(
ω + t−

√
(ω + t)2 − 1

)n
cosm arccos(ω − t)√

(ω + t)2 − 1
√

1− (ω − t)2
dt.

(A.5)

As cosm arccosx is a polynomial of power m in x, the
expression (A.5) can be reduced to a composition of poly-
nomials and complete elliptic integrals of the first and sec-
ond kind. The easiest way to find the expressions for Jmn
with small m,n is direct integration of (A.5), which is
straightforward, especially for ω > 1:

J00(ω) = ω̄K̃(ω̄); (A.6)

J01(ω) = K̃(ω̄)− 1; (A.7)

J02(ω) =
4
ω̄

[
ω̄2

4
K̃(ω̄) + Ẽ(ω̄)− 1

]
; (A.8)

J11(ω) =
2
ω̄

[(
1− ω̄2

2

)
K̃(ω̄)− Ẽ(ω̄)

]
, (A.9)

where K̃(k), Ẽ(k) are the complete elliptic integrals of
the first and second kind, respectively and ω̄ = ω−1.
To simplify the expressions we have normalized the
standard elliptic integrals by a factor of 2/π, so that
Ẽ(0) = K̃(0) = 1.

To get the explicit expression for Jmn(ω) with |ω| < 1
one uses the following expansion for the elliptic integrals
of the real argument 1/k > 1:

K̃
(

1
k

)
=k
[
K̃(k) + iK̃′(k)

]
;

Ẽ
(

1
k

)
=

1
k

[{
Ẽ(k)− k′2K̃(k)

}
− i
{

Ẽ′(k)− k2K̃′(k)
}]

,

(A.10)

where K̃′(k) = K̃(k′), Ẽ′(k) = Ẽ(k′) (k′ =
√

1− k2) are
the complementary elliptic integrals.

The GF G0
ij and the integrals Jmn are related as fol-

lows:

G0
00 = J00, G0

01 = J01, G0
13 = J02, G0

12 = J11.
(A.11)

A.2 Applications

The change in the density of states is determined as

∆gµ(ω) =
1
π

d
dω

argDµ(ω), (A.12)

Ds(ω) = 1− V γs(ω); Dp(ω) = [1− V γp(ω)]2 ,

where V stands for V11 and

γs(ω) = J00 − 2J11 + J02

= 4ω
[
2Ẽ(ω̄)− (1− ω̄2)K̃(ω̄)− 1

]
; (A.13)

γp(ω) = J00 − J02 = 4ω
[
1− Ẽ(ω̄)

]
. (A.14)

One notes that γs and γp are continuous at ω = 1, in
particular it means Im γs(p)(1−) = Im γs(p)(1+) = 0.

The critical value V c
s(p) above which the density has a

δ-peak outside the band (ω > 1) is easy to compute noting
that it is the inverse value of the real component of the
function γs(p)(ω) at ω = 1. The expressions (A.13, A.14)
at ω = 1 can be easily evaluated:

1
V c
s

= 4
(

4
π
− 1
)
≈ 1

0.915
,

1
V c
p

= 4
(

1− 2
π

)
≈ 1

0.688
·

(A.15)

It is also of some interest to calculate the density of
states at the upper band boundary for p states (especially
in the undercritical regime). From (A.12) follows that

π∆gp(ω) = Im
D′p(ω)
Dp(ω)

= Im
2γ′p(ω)

γp(ω)− 1/V
,

and γ′p(ω) is easily computed:

dγp(ω)
dω

= 4[1− K̃(ω̄)] = 4[1− ωK̃(ω)− iωK̃′(ω)],

(A.16)

where we have applied the well-known relation

dẼ(k)
dk

=
1
k

[
Ẽ(k)− K̃(k)

]
to find γ′p(ω) and then (A.10) to present its components
at ω < 1.

As γp(1) = 1/V c
p , Im γ′p(1

−) = −4K̃′(1) = −4, we
finally get:

∆gp(1−) =
8/π

1/V − 1/V c
p

· (A.17)
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